

Inverse Finite Element of the Aortic Arch, Implications for UVP Patients

Gloriani Sánchez Marrero¹, Reza Behkam¹, Andrew J. Bierhals², Julie M. Barkmeier-Kraemer³, Jonathan Vande Geest¹

¹Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA, ²Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA, ³Department of Surgery, University of Utah, Salt Lake City, UT, USA

INTRODUCTION

- Impairment of the recurrent laryngeal nerve (RLN) is the primary cause of unilateral vocal fold paralysis (UVP).
- On the left side, the RLN loops around the aortic arch, exposing the nerve to supraphysiological loads.
- Previously, our research group found that patients with iUVP presented higher aortic arch compliance than their age and gender matched controls [1].
- The purpose of this study was to investigate the difference in the mechanical properties of the aortic arch between iUVP patients and their age matched controls.

 Two-way ANOVA was performed with age and disease as the independent variables. Post-hoc analysis was done using Tukey's Test.

RESULTS

Ł

CONCLUSIONS

- We confirmed that matrix and collagen fiber stiffness (C₁₀ and K₁, respectively) increases with age.
- Our study showed that matrix and fiber stiffness is smaller for the old iUVP group when compared to their age matched control. This suggests a lack of load-bearing, stiff structural components, which might allow for supraphysiological loads on the RLN.

FUTURE DIRECTIONS

 Include residual stress and smooth muscle cell contraction to the model. This could allow us to better describe the biomechanical behavior of the aortic arch.

ACKNOWLEDGMENTS

Funding for this research was provided by the National Institute on Deafness and Other Communication Disorders (Grant 1-R01-DC-011311 to J. M. Barkmeier-Kraemer and J. P. Vande Geest).

REFERENCES

[1] Behkam *et al*, JAP, 123:303-309, 2017.

[2] Haskett et al, BMM, 9:725-736, 2010.